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Abstract.10

Background: Scan acceleration techniques, such as parallel imaging, can reduce scan times, but reliability is essential to
implement these techniques in neuroimaging.
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Objective: To evaluate the reproducibility of the longitudinal changes in brain morphology determined by longitudinal
voxel-based morphometry (VBM) between non-accelerated and accelerated magnetic resonance images (MRI) in normal
aging, mild cognitive impairment (MCI), and Alzheimer’s disease (AD).
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Methods: Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2 database, comprising subjects who
underwent non-accelerated and accelerated structural T1-weighted MRI at screening and at a 2-year follow-up on 3.0 T
Philips scanners, we examined the reproducibility of longitudinal gray matter volume changes determined by longitudinal
VBM processing between non-accelerated and accelerated imaging in 50 healthy elderly subjects, 54 MCI patients, and eight
AD patients.
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Results: The intraclass correlation coefficient (ICC) maps differed among the three groups. The mean ICC was 0.72 overall
(healthy elderly, 0.63; MCI, 0.75; AD, 0.63), and the ICC was good to excellent (0.6–1.0) for 81.4% of voxels (healthy elderly,
64.8%; MCI, 85.0%; AD, 65.0%). The differences in image quality (head motion) were not significant (Kruskal–Wallis test,
p = 0.18) and the within-subject standard deviations of longitudinal gray matter volume changes were similar among the
groups.
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Conclusion: The results indicate that the reproducibility of longitudinal gray matter volume changes determined by VBM
between non-accelerated and accelerated MRI is good to excellent for many regions but may vary between diseases and
regions.
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INTRODUCTION31

In recent years, longitudinal structural magnetic32

resonance imaging (MRI) has become widely used33

to estimate the rate of brain atrophy during normal34

aging and in a variety of neurodegenerative disor-35

ders. Between-subject morphological differences are36

usually significantly greater than the within-subject37

morphological changes. Extensive between-subject38

variability in brain morphology reduces the sensi-39

tivity for detecting changes in brain morphology.40

Longitudinal structural MRI reduces the variabil-41

ity associated with the between-subject differences42

in brain morphology by using the individual sub-43

jects as their own controls. This may avoid some of44

the problems caused by secular trends and between-45

subject variation. However, the statistical power to46

detect changes in brain morphology can be limited47

by measurement errors. Nevertheless, to quantify the48

changes in brain morphology from serial MRI scans49

in a precise manner, it is important that the acquisi-50

tion conditions at baseline and at subsequent scans51

are as similar as possible.52

Sufficient reliability is essential when using neu-53

roimaging as a potential biomarker of neurode-54

generative disorders, especially when monitoring55

longitudinal changes and treatment effects. Many56

previous studies have evaluated the reliability of57

structural T1-weighted imaging [1–15] and diffu-58

sion imaging [16–23]. Scan acceleration techniques,59

such as parallel imaging, can reduce scan times60

and are especially useful in subjects who can-61

not tolerate longer scans, and are therefore widely62

used in neuroimaging. Parallel imaging shortens63

scan times (typically by a factor of 2 to 3) by a64

reduction in the number of phase-encoding steps65

during image acquisition using the spatial informa-66

tion inherent in receiver coils. On the other hand,67

shorter scan times may cause a reduced signal-68

to-noise ratio and parallel imaging relies on the69

accuracy of the coil calibration data. However,70

few studies have investigated the effects of scan71

acceleration on the estimated longitudinal changes72

in brain morphology [24–28]. In addition, we are73

unaware of any studies that have fully investigated74

the reproducibility of longitudinal changes in brain75

morphology between non-accelerated and acceler-76

ated imaging on a voxel-wise basis. It is also unclear77

whether the type of disease affects the reproduci-78

bility.79

We obtained 3.0 T structural T1-weighted MRI80

data from the Alzheimer’s Disease Neuroimaging81

Initiative (ADNI) database to determine the re- 82

producibility (i.e., variation due to different scan seq- 83

uences) of the longitudinal (2-year) changes in brain 84

morphology, measured by longitudinal voxel-based 85

morphometry (VBM), between non-accelerated and 86

accelerated scans in healthy elderly subjects, patients 87

with mild cognitive impairment (MCI), and patients 88

with Alzheimer’s disease (AD). 89

MATERIALS AND METHODS 90

Subjects 91

This study used data from the ADNI 2 database 92

(available at http://adni.loni.usc.edu) comprising 93

subjects who underwent non-accelerated and accel- 94

erated structural T1-weighted MRI at screening and 95

at a 2-year follow-up (i.e., 2 [1 non-accelerated and 96

1 accelerated] scans × 2 time-points per subject) on 97

3.0 T Philips scanners. The study included 112 sub- 98

jects: 50 healthy control subjects, 54 patients with 99

MCI, and eight patients with AD. The mean age 100

(range) at screening was 72.3 ± 6.3 years (healthy 101

control subjects, 72.5 ± 5.4 years [64.1–83.7 years]; 102

patients with MCI, 71.2 ± 6.8 years [56.7–88.7 103

years]; patients with AD, 78.1 ± 5.5 years [70.3–86.6 104

years]). The mean scan interval (range) was 2.1 ± 105

0.1 years (healthy control subjects, 2.1 ± 0.1 106

years [1.9–2.4 years]; patients with MCI, 2.0 ± 0.1 107

years [1.8–2.2 years]; patients with AD, 2.0 ± 108

0.04 years [2.0–2.1 years]). 109

The ADNI was launched in 2003 as a public– 110

private partnership, led by the Principal Investiga- 111

tor Michael W. Weiner, MD. The primary goal of 112

ADNI was to test whether serial MRI, positron emis- 113

sion tomography (PET), other biological markers, 114

and clinical and neuropsychological assessment can 115

be combined to measure the progression of MCI and 116

early AD. The ADNI was approved by the institu- 117

tional review boards of all participating sites. Written 118

informed consent was obtained from all participants. 119

Imaging data acquisition 120

MRI scans were performed using 3.0 T Philips 121

scanners at multiple sites and the same ADNI 3.0 122

T imaging protocol (http://adni.loni.usc.edu). Vari- 123

ous models of scanners were used, but each 124

subject was scanned at screening and follow-up 125

using the same scanner. Non-accelerated structural 126

T1-weighted images were acquired using a three-di- 127

mensional (3D) magnetization-prepared rapid grad- 128

ient-echo (MP-RAGE) sequence in 170 sagittal slices 129

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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Fig. 1. Overview of the longitudinal voxel-based morphometry (VBM) conducted using statistical parametric mapping (SPM) 12 software.
DARTEL, Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra.

(repetition time = 6.8 ms; echo time = 3.1 ms; inver-130

sion time = 900 ms; flip angle = 9◦; field of view =131

256 × 240 mm; slice thickness = 1.2 mm with no132

gap; acquisition matrix = 256 × 240; image matrix =133

256 × 256; reconstructed voxel size = 1.0 × 1.0 ×134

1.2 mm; scan time = 9 : 06). Accelerated structural135

T1-weighted images were acquired using the 3D MP-136

RAGE sequence with sensitivity encoding (SENSE)137

acceleration (phase reduction = 1, phase oversam-138

pling factor = 1.5, slice reduction = 1.8) in 170 sagittal139

slices (repetition time = 6.8 ms; echo time = 3.1 ms;140

inversion time = 900 ms; flip angle = 9◦; field of141

view = 270 × 253 mm; slice thickness = 1.2 mm with142

no gap; acquisition matrix = 244 × 227; image matrix143

= 256 × 256; reconstructed voxel size = 1.05 × 1.05144

× 1.2 mm; scan time = 5 : 34). B1 non-uniformity145

correction was integrated into the sequences and cor-146

rection for gradient non-linearity distortion was not147

applied because of the linearity of Phillips gradient148

systems. The non-parametric non-uniform intensity149

normalization algorithm N3 was used to correct150

the MP-RAGE images for non-uniform intensity151

[29–31].152

The quality of the MP-RAGE images was sub-153

jectively graded as good, adequate, or poor by three154

radiologists with 21 (H.T.), 10, and 2 years of expe-155

rience in neuroradiology independently and in a156

blinded manner. In case of disagreements, final eval-157

uations were made by consensus.158

Image processing159

Image processing was primarily performed using160

statistical parametric mapping (SPM) 12 software161

developed in the Wellcome Department of Imaging162

Neuroscience, Institute of Neurology, University 163

College London and MATLAB 9.1 (Mathworks, 164

Sherborn, MA). The image processing steps des- 165

cribed below are summarized in Fig. 1. 166

Longitudinal registration of pairs (obtained at 167

screening and 2 years later) of MP-RAGE images 168

was performed by pairwise inverse-consistent align- 169

ment between the first and second scans for each 170

subject, while incorporating bias field correction [32] 171

to calculate the mid-point average images and to 172

map the divergences in velocity fields (represent- 173

ing the rates of volumetric expansion/contraction). 174

The mid-point average images were segmented into 175

gray matter, white matter, and cerebrospinal fluid 176

using the unified segmentation algorithm [33], and 177

using the International Consortium for Brain Map- 178

ping gray matter, white matter, cerebrospinal fluid, 179

bone, soft tissue, and air/background templates as 180

priors. The segmented gray matter and white mat- 181

ter images, and the maps of longitudinal gray matter 182

volume changes, which were calculated by multiply- 183

ing the gray matter images by the divergence maps, 184

were spatially normalized using the Diffeomorphic 185

Anatomical Registration Through Exponentiated Lie 186

Algebra (DARTEL) algorithm [34]. The normalized 187

images were modulated to correct voxel intensity for 188

volume displacement during normalization to reflect 189

brain volume, and were smoothed using an 8 mm 190

kernel. 191

Statistical analysis 192

To examine the reproducibility of the longitudinal
changes in gray matter volume between non-
accelerated and accelerated structural T1-weighted
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imaging, the intraclass correlation coefficient (ICC)
was calculated for each voxel using a single-
measurement, absolute-agreement, two-way mixed-
effects model [35, 36] in MATLAB 9.1, as follows:

ICC = MSR − MSE

MSR + (k − 1) MSE + k
n

(MSC − MSE)

where

MSR (mean square for rows) = SSR

n − 1

MSC (mean square for columns) = SSC

k − 1

MSE (mean square for error) = SSE

(n − 1) (k − 1)

SST (total sum of squares) =
∑

x2
T −

(∑
xT

)2

N

SSR (sum of squares for rows) =
n∑

i

(∑
xi

)2

k
−

(∑
xT

)2

N

SSC (sum of squares for columns) =
k∑

j

(∑
xj

)2

n
−

(∑
xT

)2

N

SSE (sum of squares for error) = SST − SSR − SSC

∑
xT =

n∑

i

k∑

j

xij,
∑

x2
T =

n∑

i

k∑

j

x2
ij

N = n × k, n = number of subjects (rows)

k = number of measurements (columns)

(here 2 = 1 non-accelerated + 1 acceraleted)

Histogram analysis was performed for each ICC193

map with a histogram bin width of 0.002 and a range194

of –1.0 to 1.0. Only voxels with a volume of > 0.05195

on all gray matter images were included in the ICC196

calculation and histogram analysis. The ICC was197

interpreted using Cicchetti’s criteria, which classify198

an ICC of <0.40 as poor, 0.40–0.59 as fair, 0.60–0.74199

as good, and 0.75–1.00 as excellent [37].200

The mean and within-subject standard deviation 201

images of longitudinal gray matter volume changes 202

were calculated from non-accelerated and accelerated 203

images. The standard deviation images of longitudi- 204

nal gray matter volume changes were calculated from 205

non-accelerated images. 206

To evaluate the effect of image quality on the 207

reproducibility of longitudinal changes in gray mat- 208

ter volume between non-accelerated and accelerated 209

imaging, we used the Kruskal–Wallis test to compare 210

the image quality among healthy control subjects, 211

patients with MCI, and patients with AD using SPSS 212

Statistics 22 (IBM, Armonk, NY). The significance 213

level was set at p < 0.05. 214

RESULTS 215

ICC maps and histogram analysis 216

The voxel-wise ICC maps of the longitudinal 217

changes in gray matter volume over 2 years for repro- 218

ducibility between non-accelerated and accelerated 219

imaging in healthy control subjects, patients with 220

MCI, and patients with AD are shown in Fig. 2. The 221

results of the histogram analysis (frequency poly- 222

gons) of the ICC maps are shown in Fig. 3. The ICC 223

maps and their frequency polygons differed among 224

the three groups of subjects. The mean ICC was 225

0.72 overall (0.63 for healthy control subjects, 0.75 226

for patients with MCI, and 0.63 for patients with 227

AD). The median ICC was 0.75 overall (0.66 for 228

healthy control subjects, 0.79 for patients with MCI, 229

and 0.71 for patients with AD). The histogram peak 230

was 0.81 overall (0.70 for healthy control subjects, 231

0.84 for patients with MCI, and 0.85 for patients 232

with AD). The distribution of the voxel-wise ICC 233

estimates is summarized in Table 1. Overall, the 234

reproducibility was excellent (ICC = 0.75–1.00) for 235

49.3% of voxels (23.6% for healthy control subjects, 236

60.2% for patients with MCI, and 43.3% for patients 237

with AD). The reproducibility was good to excel- 238

lent (ICC = 0.60–1.00) for 81.4% of voxels (64.8% 239

for healthy control subjects, 85.0% for patients with 240

MCI, and 65.0% for patients with AD). 241

Longitudinal changes in gray matter volume at 242

2 years 243

The mean longitudinal changes in gray matter vol- 244

ume at 2 years in the three groups of subjects are 245

shown in Fig. 4. The results of the histogram analysis 246

(frequency polygons; histogram bin width = 0.0002, 247
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Fig. 2. Voxel-wise ICC maps of the longitudinal changes in gray matter volume over 2 years for reproducibility between non-accelerated
and accelerated imaging. ICC, intraclass correlation coefficient; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer’s
disease.

Fig. 3. Histograms (frequency polygons) of the voxel-wise ICC
maps of longitudinal changes in gray matter volume over 2 years
for reproducibility between non-accelerated and accelerated imag-
ing. ICC, intraclass correlation coefficient; HE, healthy elderly;
MCI, mild cognitive impairment; AD, Alzheimer’s disease.

range = –0.1 to 0.1) are shown in Fig. 5. The patterns248

of gray matter atrophy that were detected by accel-249

erated imaging closely matched those detected by250

non-accelerated imaging. The extent of gray matter251

atrophy over 2 years was greater in patients with MCI252

than in healthy control subjects, and was also greater253

in patients with AD than in patients with MCI. In254

patients with MCI and AD, gray matter atrophy was255

Table 1
The distribution of voxel-wise ICC estimates of the longitudi-
nal changes in gray matter volume at 2 years for reproducibility

between non-accelerated and accelerated imaging

ICC Poor Fair Good Excellent
(0.00–0.39) (0.40–0.59) (0.60–0.74) (0.75–1.00)

Overall 2.9% 15.7% 32.1% 49.3%
HE 9.2% 26.0% 41.2% 23.6%
MCI 2.5% 12.5% 24.8% 60.2%
AD 18.2% 16.9% 21.7% 43.3%

ICC, intraclass correlation coefficient; HE, healthy elderly; MCI,
mild cognitive impairment; AD, Alzheimer’s disease.

especially prominent in the temporal lobe, includ- 256

ing the hippocampus and parahippocampal cortex, 257

the posterior cingulate cortex, the precuneus, and the 258

orbitofrontal cortex. 259

The standard deviations and within-subject stan- 260

dard deviations of longitudinal changes in gray matter 261

volume over 2 years are shown for healthy control 262

subjects, patients with MCI, and patients with AD in 263

Fig. 6. As a whole, the variability of longitudinal vol- 264

ume changes was larger in patients with MCI than in 265

healthy control subjects or patients with AD. On the 266

other hand, the within-subject variability was almost 267

the same among the three groups of subjects.
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Fig. 4. Mean longitudinal changes in gray matter volume over 2 years derived from (a) non-accelerated and (b) accelerated imaging. HE,
healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

Fig. 5. Histograms (frequency polygons) of the mean longi-
tudinal changes in gray matter volume over 2 years derived
from non-accelerated (black) and accelerated (red) imaging. HE,
healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer’s
disease.

Image quality268

The distribution of image quality (classified as269

good, adequate, or poor) in each group of subjects270

is shown in Fig. 7. The distribution of image qual-271

ity were not significantly different among the healthy272

control subjects, patients with MCI, and patients with273

AD (Kruskal–Wallis test, p = 0.18).

DISCUSSION 274

In this study, we determined the reproducibility 275

of the longitudinal (2-year) changes in brain mor- 276

phology, measured by longitudinal VBM, between 277

non-accelerated and accelerated structural T1- 278

weighted imaging in healthy elderly subjects, patients 279

with MCI, and patients with AD. The reproducibility 280

of the longitudinal changes in gray matter volume 281

between non-accelerated and accelerated imaging 282

was rated as good to excellent for 81.4% of voxels 283

as a whole. The distribution of image quality was not 284

significantly different among the three groups of sub- 285

jects, which was possibly due to not much difference 286

in head motion, and the within-subject variability 287

of longitudinal changes in gray matter volume was 288

almost the same among the three groups. The dif- 289

ferences in the ICCs among healthy elderly subjects, 290

patients with MCI, and patients with AD were largely 291

due to the differences in the variability of longitudinal 292

changes in gray matter volume because of no sig- 293

nificant difference in image quality among the three 294

groups in this study. 295

Some studies have investigated the effects of 296

using acceleration during structural T1-weighted 297
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Fig. 6. Standard deviations (a) and within-subject standard deviations (b) of longitudinal changes in gray matter volume over 2 years. HE,
healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

Fig. 7. Distribution of image quality. HE, healthy elderly; MCI,
mild cognitive impairment; AD, Alzheimer’s disease.

imaging on the estimated longitudinal changes in298

brain morphology [24–28]. Ching et al. compared299

the longitudinal brain changes detected by acceler-300

ated and non-accelerated scans using tensor-based301

morphometry and ADNI data [24]. They found302

no significant difference in the region-of-interest303

summaries of atrophy rates determined using accel-304

erated and non-accelerated scans taken at 6- and305

12-month intervals. Although voxel-wise analysis306

revealed some apparent regional differences in the 307

atrophy rates at 6 months, there were no differences 308

at 12 months. Leung et al. used ADNI data to investi- 309

gate the impact of switching from non-accelerated 310

to accelerated MRI over a 12-month interval on 311

whole-brain atrophy measured using the k-means 312

normalized boundary shift integral and deformation- 313

based morphometry [25]. They found that switching 314

from non-accelerated scans at baseline to acceler- 315

ated scans at follow-up had a relatively minor effect 316

on the computed atrophy rates, although the effect 317

was dependent on the exact sequence details and 318

the scanner manufacturer [25]. Vemuri et al. com- 319

pared the tensor-based morphometry summary scores 320

between accelerated and non-accelerated scan pairs 321

for the annualized structural changes in a region 322

characteristically affected in AD, also using ADNI 323

data [26]. They found several systematic differences 324

between the summary scores computed from accel- 325

erated and non-accelerated scan pairs. However, the 326

accelerated scans showed a comparable performance 327

to non-accelerated scans for discriminating among 328

groups of patients. In this study, we evaluated the 329

reproducibility of the longitudinal changes in brain 330

morphology over 2 years between non-accelerated 331
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and accelerated structural T1-weighted imaging on332

a voxel-wise basis using longitudinal VBM and333

data from the ADNI database. The reproducibility334

between non-accelerated and accelerated imaging335

was good to excellent for 81.4% of voxels, but dif-336

fered by diagnosis and by region.337

Head motion contributes to the within-subject vari-338

ability in various neuroimaging settings. Usually,339

head motion cannot be directly measured during340

structural T1-weighted imaging; however, it mani-341

fests as decreased image quality [38]. In this study,342

we could not directly measure head motion during343

imaging and instead evaluated head motion in terms344

of image quality. The distribution of image quality345

was not significantly different and the within-subject346

variability of longitudinal changes in gray matter vol-347

ume was almost the same among the three groups of348

subjects. As long as there is no difference in head349

motion (image quality), the within-subject variabil-350

ity of longitudinal changes in gray matter volume351

may not be different among healthy elderly sub-352

jects, patients with MCI, and patients with AD. To353

the best of our knowledge, no prior study has eval-354

uated the relationship between head motion (image355

quality) and the differences in the reproducibility of356

longitudinal changes in brain morphology between357

non-accelerated and accelerated imaging among358

diseases.359

We used the longitudinal registration method [32]360

implemented in the SPM software to register the361

baseline and follow-up scans, and to calculate the362

longitudinal changes in brain volume. This method363

combines rigid alignment, diffeomorphic warping,364

and differential intensity non-uniformity correction365

with respect to a within-subject template that evolves366

into an average of these three aspects, and is367

constructed in a symmetric, transitive manner. In lon-368

gitudinal studies of brain morphology, longitudinal369

image processing, which seeks to reduce the within-370

subject variability by integrating the information371

from scans taken at each time-point and calculat-372

ing within-subject changes, is generally preferable to373

treating each scan at each time-point independently,374

an approach that is usually used in cross-sectional375

studies. However, longitudinal image processing can376

introduce bias if the scans taken at different time-377

points are not treated equivalently and symmetrically378

(i.e., the scans undergo different processing steps). To379

prevent bias from affecting the estimated longitudinal380

changes in brain morphology, it is essential to treat381

the sequential scans symmetrically; otherwise, lon-382

gitudinal image processing can be damaging rather383

than useful. In this study using longitudinal VBM, we 384

found evidence of longitudinal gray matter atrophy in 385

regions similar to previous reports [39, 40]. 386

In this study, the scan time was 9 minutes and 6 387

seconds for non-accelerated imaging and 5 minutes 388

and 34 seconds for accelerated imaging. While scan 389

acceleration, such as parallel imaging, can reduce 390

scan times, shorter scan times may cause a reduced 391

signal-to-noise ratio, which might affect the results of 392

brain morphometry. On the other hand, longer scans 393

may be more subject to the effect of head motion. This 394

study showed that the reproducibility of longitudi- 395

nal gray matter volume changes determined by VBM 396

between non-accelerated and accelerated imaging 397

was good to excellent for many regions. Accelerated 398

imaging may be preferable to non-accelerated imag- 399

ing especially in patients unable to tolerate longer 400

scan times. 401

There are limitations to this study. First, the image 402

quality was not significantly different among the three 403

groups. However, this does not necessarily mean that 404

the image quality was equivalent among the groups. 405

Second, the number of patients with AD was smaller 406

than those of healthy elderly subjects and patients 407

with MCI, while the numbers of healthy elderly sub- 408

jects and patients with MCI were almost the same. 409

This may make the results in patients with AD some- 410

what noisier. Finally, various models of scanners at 411

various sites were used in the ADNI. Although each 412

subject underwent scans at screening and follow-up 413

on the same scanner, the effect of site/scanner on lon- 414

gitudinal morphometric changes may exist, but this 415

is somewhat beyond the scope of this study. 416

CONCLUSIONS 417

We determined the reproducibility of the lon- 418

gitudinal changes in brain morphology over 2 419

years, measured by longitudinal VBM, between 420

non-accelerated and accelerated imaging in healthy 421

elderly subjects, patients with MCI, and patients 422

with AD using data from the ADNI database. Our 423

results indicate that the reproducibility of the lon- 424

gitudinal changes in gray matter volume between 425

non-accelerated and accelerated imaging is good to 426

excellent for many regions of the brain but varies by 427

disease and region. 428
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